Development of Tools for Genetic Analysis of Phenanthrene Degradation and Nanopod Production by Delftia sp. Cs1-4
نویسندگان
چکیده
The bacterium Delftia sp. Cs1-4 produces novel extracellular structures (nanopods) in conjunction with its growth on phenanthrene. While a full genome sequence is available for strain Cs1-4, genetic tools that could be applied to study phenanthrene degradation/nanopod production have not been reported. Thus, the objectives of this study were to establish such tools, and apply them for molecular analysis of nanopod formation or phenanthrene degradation. Three types of tools were developed or validated. First, we developed a new expression system based on a strong promoter controlling expression of a surface layer protein (NpdA) from Delftia sp. Cs1-4, which was ca. 2,500-fold stronger than the widely used lactose promoter. Second, the Cre-loxP system was validated for generation of markerless, in-frame, gene deletions, and for in-frame gene insertions. The gene deletion function was applied to examine potential roles in nanopod formation of three genes (omp32, lasI, and hcp), while the gene insertion function was used for reporter gene tagging of npdA. Lastly, pMiniHimar was modified to enhance gene recovery and mutant analysis in genome-wide transposon mutagenesis. Application of the latter to strain Cs1-4, revealed several new genes with potential roles in phenanthrene degradation or npdA expression. Collectively, the availability of these tools has opened new avenues of investigation in Delftia sp. Cs1-4 and other related genera/species with importance in environmental toxicology.
منابع مشابه
Effects of Outer Membrane Vesicle Formation, Surface-Layer Production and Nanopod Development on the Metabolism of Phenanthrene by Delftia acidovorans Cs1-4
Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many func...
متن کاملNanopods: A New Bacterial Structure and Mechanism for Deployment of Outer Membrane Vesicles
BACKGROUND Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, suc...
متن کاملComplete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mecha...
متن کاملNovel Bacterial Strains Pseudomonas sp. and Bacillus sp. Isolated from Petroleum Oil Contaminated Soils for Degradation of Flourene and Phenanthrene
Flourene and phenanthrene are organic compounds with high hydrophobicity and toxicity. Being recalcitrant in nature they are accumulating in the environment at an alarming concentration, posing serious threat to living beings. Thus in the present study, microorganisms were screened for their ability to degrade these contaminants at high concentrations in least period of time. Two out of fifteen...
متن کاملNovel Bacterial Strains Pseudomonas sp. and Bacillus sp. Isolated from Petroleum Oil Contaminated Soils for Degradation of Flourene and Phenanthrene
Flourene and phenanthrene are organic compounds with high hydrophobicity and toxicity. Being recalcitrant in nature they are accumulating in the environment at an alarming concentration, posing serious threat to living beings. Thus in the present study, microorganisms were screened for their ability to degrade these contaminants at high concentrations in least period of time. Two out of fifteen...
متن کامل